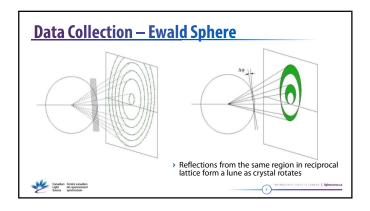
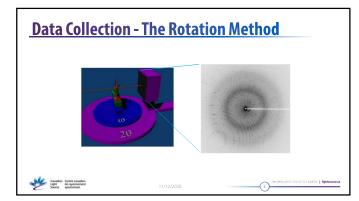
10th Annual **CLS MX Data Collection School** VIRTUAL EDITION

Data Collection Strategies A practical Guide

Michel Fodje

Outline


Canadian Centre canadien Light de rayonnement Source synchrotron


- The goal of data collection
- Steps involved

Canadian Centre canadian Light Source Synchrotron

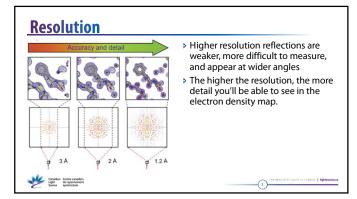
- Data collection parameters
- Practical tips on collecting good quality data

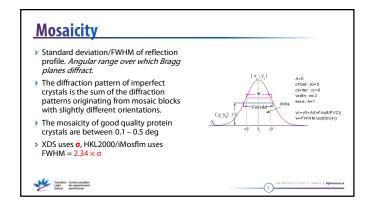
Data Collection – Rotation MethodOptimization (figure for the second s

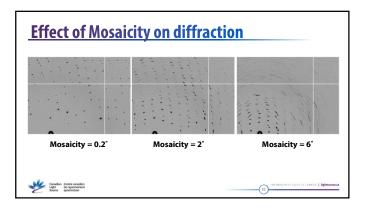
Preamble

- > Data collection is the last experimental step in structure determination
- All down-stream steps will benefit or suffer from choices made during data collection
- It is not always possible to repeat it
- Therefore

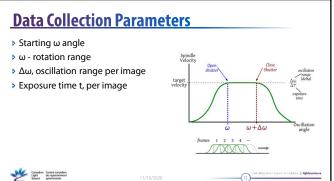
Canadian Centre canadien Light de rayonnement Source synchrotron

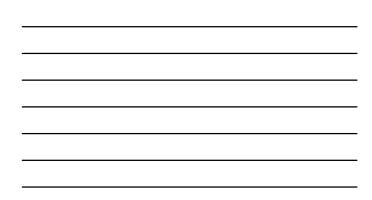

- It is very important to <u>carefully select parameters</u> in order to measure <u>the</u> <u>best data possible</u> on the crystal.
 Goal is to obtain best possible statistics whilst using as few photons as
- Goal is to obtain <u>best possible</u> statistics whilst using as few photons as possible.

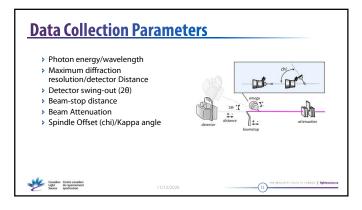

What is the best data possible?


- Achieve highest resolution the crystal will
 Resolution diffract
- Measure 100% of all possible reflections to that resolution
 - An incomplete high-resolution dataset can be worse than a complete lower resolution dataset.
- Achieve highest possible data accuracy and precision
 within the constraints of factors beyond
- your control. Collect data as efficiently as possible

11/1222020 Canadian Centre canadien Light Source synchrotron

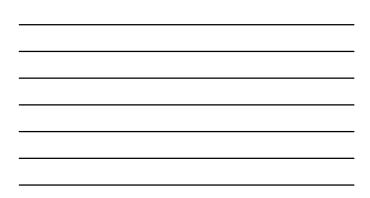

- CompletenessMosaicity
- Overlaps
- Overloads
- Radiation damage
- Background





 Setup the beamline parameters Select and mount a crystal Align the crystal into the beam Characterize sample and determine optimal parameters Collect diffraction data frames according to a set of parameters Process the data immediately. 	
Conduc Contro canadam Liph de rapponentes Liph de rapponentes	TI) THE PRESENT (SET IN CARLES Bybernesca

Practical Tips – Selecting the Crystal


- Should be single and intact (not split).
- Do not confuse split-crystals with twins

Canadian Centre canadien Light de rayonnement Source synchrotron

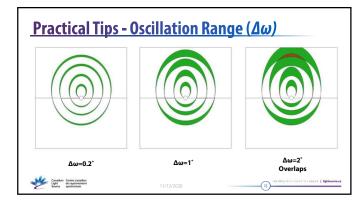
- \triangleright Collecting and processing a few frames 90° apart (screening) will reveal problems with the crystal
- If you have many crystals, try several, as crystals within the same drop may have differences in mosaicity/resolution.

(14)

Rotation range (°) required to collect a co	mplete data set in different crystal classe	s
The direction of the spindle axis is given i	n parentheses; ac means any vector in th	e ac plane.
Point group	Native data	Anomalous data
1	180 (any)	180 + 2θ _{max} (any)
2	180 (b); 90 (ac)	180 (b); 180 + 2θ _{max} (ac)
222	90 (ab or ac or bc)	90 (ab or ac or bc)
4	90 (c or ab)	90 (c); 90 + θ _{max} (ab)
422	45 (c); 90 (ab)	45 (c); 90 (ab)
3	60 (c); 90 (ab)	$60 + 2\theta_{max}$ (c); $90 + \theta_{max}$ (ab
32	30 (c); 90 (ab)	30 + θ _{max} (c); 90 (ab)
6	60 (c); 90 (ab)	60 (c); 90 + θ _{max} (ab)
622	30 (c); 90 (ab)	30 (c); 90 (ab)
23	~60	~70
432	~35	~45
Dauter, Acta Cryst. (1999). D55, 1703-1717 [d	ol:10.1107/S09074449999008367]	

Practical Tips – Multiplicity/Redundancy

- > The average number of times a given reflection is independently measured.
- → Higher multiplicity \rightarrow higher signal-to-noise ratios \rightarrow better data quality \rightarrow GOOD Improves anomalous signal (MAD/SAD)
- Increase Rotation range beyond minimum required to increase multiplicity
 - > Try to get at least 4-fold multiplicity in all shells

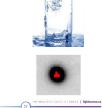

Canadian Centre caracter Light Source synchrotron


> But first make sure you will get 100% data before the crystal decays.

16

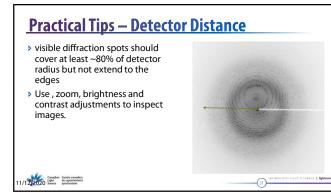
17

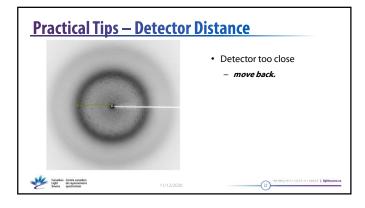
Practical Tips - Oscillation Range ($\Delta \omega$) > Choice of delta affects signal/noise ratio. "thin"-slicing (*fine-slicing*) improves signal/noise, allows more accurate refinement of spot positions (with 3D integration), more accurate anomalous $\Delta \omega > \text{mosaicity} = \text{Higher back}$ er signal/noise. signal. Beware of readout-noise and shutter jitter noise. 2D integration programs prefer "thick"slicing. Δωairity or $\Delta \omega \sim \text{mosaicity} = \text{go}$ od signal/nois See M. Mueller, M. Wang, and C. Schulze-Briese, (2012) Acta Cryst. D68, 42-56. Canadian Centre canadian Light de rayonnement Source synchestron



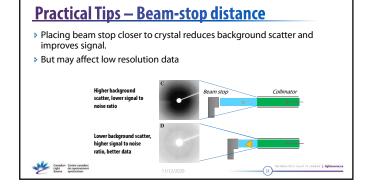
<u>Practical Tips – Exposure Time & Attenuation</u>

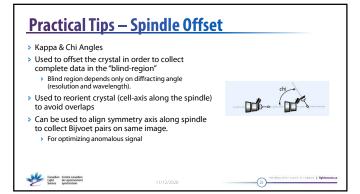
- The higher the exposure time, the higher the reflection intensities
- Higher exposure times → higher signal-to-noise ratios → better data quality → GOOD
 Doubling exposure, improves signal to noise by √2
 - Longer exposure, imported signal to hold by V2
 Longer exposure reduces impact of high frequency noise in beam intensity and position.
- ▹ Higher exposure → faster radiation damage → BAD
- > Higher exposure → overloaded detector pixels → BAD
 > Attenuate the beam if the spots are overloaded and the
- exposure time is already low. > It is better to collect a 100% complete data of lower intensity than to collect incomplete data with high intensities and high signal-to-noise ratios.



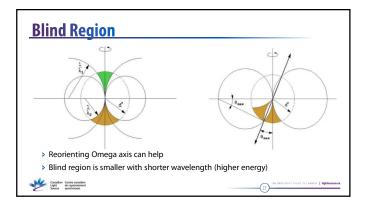


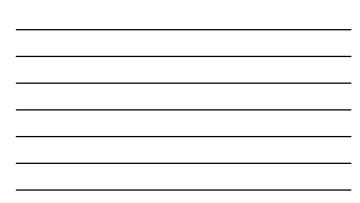
Practical Tips – Detector Distance/ Offset

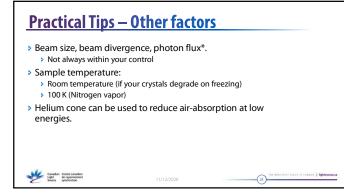

- > Determines the maximum resolution spots recordable
- Longer distance → better signal-to-noise ratio:
 The background area increases as square of distance
 Reflection profiles increase less.
- Spots are better resolved at longer distances. May need to sacrifice resolution to get more complete data.
- \triangleright 20 Offset may be used to increase resolution limit without reducing distance.
- Avoid 2θ for MAD/SAD anomalous data
 Anomalous completeness suffers.
- \triangleright Minimum rotation range required for complete data is higher if 20 is used.


Canadian Centre canadien Light Source synchrotron

	<u>– Detector D</u>	
1.3		Detector too far
		- move in.
	e second	

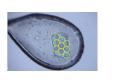





Practical Tips – Energy / Wavelength

- Crucial for Anomalous data (SAD/MAD)
- For MAD/SAD, always use Fluorescence Scan rather than theoretical peak and inflection point values.
- Also determines maximum resolution measurable,
 High energy (short wavelength) = Higher resolution,
 - Low energy (long wavelength) = lower resolution for same detector distance.
- Air absorption increases exponentially with decrease in energy (long wavelength).
- Most detectors are less efficient at lower energies.

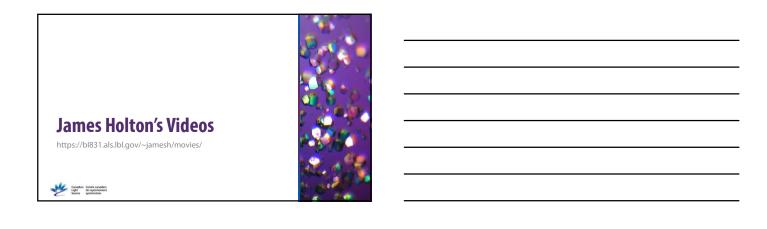
Canadan Centre canaden Light Source synchrotren

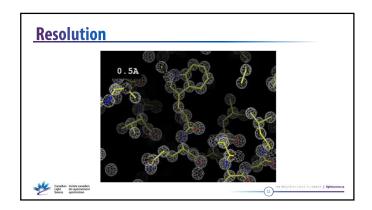


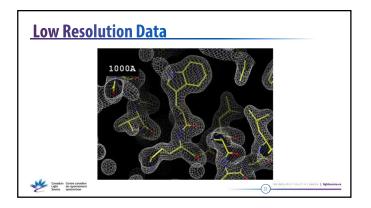
Selecting the best parameters for your Crystal

- Select and Characterize the best crystal among many
- Determine Parameters (Strategy) for data collection.
- Collect a few frames 90-degrees apart
 Inspect the images for multiple/split crystals , overloads, detector coverage
- Process them using a strategy program (AutoProcess, Mosflm, HKL2000) etc.

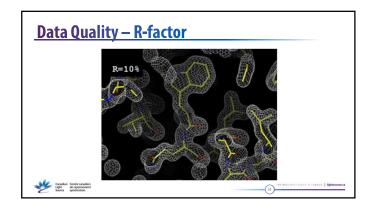
- Raster Screening:
 Select the best part
 - Select the best part of a large crystal to collect on with a small beam.




29 THE RECOTEST EVENT IN CANADA | lightsource.c


Finally

Canadian Centre canadien Light de rayonnement Source synchrotron


- Start processing your data as soon as you have enough images
 Helps identify problems/errors in parameters before you have used all your time or radiation-damaged your crystal.
- Fully process your data before you leave the synchrotron
- Back-up your data (both raw and processed)
- Acknowledge the beamline/Synchrotron if you use the data in anyway to help solve the structure, even if it is not the final data you deposit.

